Poster Presentation HUPO 2019 - 18th Human Proteome Organization World Congress

Proteomics on the way to reverse Avogadro number as basis of precision medicine (#415)

Alexander Archakov 1
  1. Institute of Biomedical Science, 10, 8, Russia

The main advances major challenges of the C-HPP – insufficient analytical sensitivity of proteomic technologies and the complexity of the proteome. The increased analytical sensitivity of proteomic technologies and the combined results from transcriptomic and proteomic analyses of a single chromosome of individual sample has facilitated the study of proteoforms. For example, of the 275 protein-coding genes on human chromosome 18, 85% of the transcripts were discovered using next-generation sequencing (NGS) and polymerase chain reaction (PCR), and 45% of the proteins were detected using shotgun and selected reaction monitoring technology, in both liver tissue and the HepG2 cell line. To increase proteome coverage, a combination of shotgun technology and selected reaction monitoring with two-dimensional alkaline fractionation has been recently developed by using UPS 1 and 2. Sigma Aldrige sets as the “gold standard”. To detect proteoforms that cannot be identified by such technologies, nanotechnologies such as combined atomic force microscopy with molecular fishing and/or nanowire detection were used. Both technologies provide a powerful tool for single molecule analysis, by analogy with nanopore sequencing during genome analysis. We believe that such approach could be used for detection of the «missing» proteins of the single chromosome during C-HPP. According our point of view the technology sensitivity drives the depth and width of proteome.