Poster Presentation HUPO 2019 - 18th Human Proteome Organization World Congress

Exosomes derived from human primary and metastatic colorectal cancer cells contribute to functional heterogeneity of activated fibroblasts by reprogramming their proteome (#798)

Alin Rai 1 , David W Greening 1 2 , Richard J Simpson 2
  1. Baker heart and diabetis instutitbe, Melbourne, VIC, Australia
  2. La Trobe University, Melbourne, VIC, Australia

Cancer-associated fibroblasts (CAFs) are a heterogeneous population of activated fibroblasts that constitute a dominant cellular component of the tumor microenvironment (TME) performing distinct functions. Here, the role of tumor-derived exosomes (Exos) in activating quiescent fibroblasts into distinct functional subtypes is investigated. Proteomic profiling and functional dissection reveal that early- (SW480) and late-stage (SW620) colorectal cancer (CRC) cell-derived Exos both activated normal quiescent fibroblasts (α-SMA , CAV , FAP , VIM ) into CAF-like fibroblasts (α-SMA , CAV , FAP , VIM ). Fibroblasts activated by early-stage cancer-exosomes (SW480-Exos) are highly pro-proliferative and pro-angiogenic and display elevated expression of pro-angiogenic (IL8, RAB10, NDRG1) and pro-proliferative (SA1008, FFPS) proteins. In contrast, fibroblasts activated by late-stage cancer-exosomes (SW620-Exos) display a striking ability to invade through extracellular matrix through upregulation of pro-invasive regulators of membrane protrusion (PDLIM1, MYO1B) and matrix-remodeling proteins (MMP11, EMMPRIN, ADAM10). Conserved features of Exos-mediated fibroblast activation include enhanced ECM secretion (COL1A1, Tenascin-C/X), oncogenic transformation, and metabolic reprogramming (downregulation of CAV-1, upregulation of glycogen metabolism (GAA), amino acid biosynthesis (SHMT2, IDH2) and membrane transporters of glucose (GLUT1), lactate (MCT4), and amino acids (SLC1A5/3A5)). This study highlights the role of primary and metastatic CRC tumor-derived Exos in generating phenotypically and functionally distinct subsets of CAFs that may facilitate tumor progression.